Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

In 2000, Professor Sir John B. Pendry of Imperial College London — the John Pendry who enticed millions of Harry Potter fans around the world with the possibility of a real Invisibility Cloak — suggested a method of creating a lens with a theoretically perfect focus. The resolution of any optical imaging system has a maximum limit due to diffraction but Pendry’s theoretic perfect lens would be crafted from metamaterials (materials engineered to have properties not found in nature) to go beyond the diffraction limit of conventional lenses. Overcoming this resolution limit of conventional optics could propel optical imaging science and technology into realms once only dreamt by common Muggles.

Scientists all over the world have since endeavored to achieve super-resolution imaging that capture the finest of details contained in evanescent waves that would otherwise be lost with conventional lenses. Hyperlenses are super-resolution devices that transform scattered evanescent waves into propagating waves to project the image into the far-field. Recent experiments that focus on a single hyperlens made from an anisotropic metamaterial with a hyperbolic dispersion have demonstrated far-field sub-diffraction imaging in real time. However, such devices are limited by an extremely small observation area which consequently require precise positioning of the subject. A hyperlens array has been considered to be a solution, but fabrication of such an array would be extremely difficult and prohibitively expensive with existing nanofabrication technologies.

Leave a Reply

Your email address will not be published. Required fields are marked *